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Abstract

Purpose

Endophthalmitis is a serious eye infection that can occur after intravitreal injections.
Topical antibiotics are frequently used as a preventative measure, but their impact on the
conjunctival microbiome is not fully understood.

Methods

Conjunctival swabs were collected from 33 eyes of 33 patients undergoing intravitreal
injections, both before and after a 3-day course of prophylactic topical levofloxacin 0.5%.
Conjunctival microbiome analysis was conducted using 16S rRNA sequencing on the
lllumina MiSeq platform. Bioinformatics processing identified unique amplicon sequence
variants (ASVs) to evaluate microbial diversity and community composition. Alpha and
beta diversity indices were analyzed.

Results

Topical levofloxacin treatment resulted in no significant change in alpha diversity indices,
including Shannon index, Chao1, Shannon, PD whole tree, and observed ASVs, indicat-
ing stable microbial richness and evenness. In contrast, beta diversity analysis, assessed
through Bray-Curtis dissimilarity, revealed significant differences in microbial composition
between pre- and post-treatment samples. These changes included a decrease in the
abundance of Staphylococcus and Bacillus species and an increase in the abundance of
Streptococcus, Haemophilus, and Neisseria.

PLOS ONE | https://doi.org/10.1371/journal.pone.0320785 March 31, 2025

1/16



http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0320785&domain=pdf&date_stamp=2025-03-31
https://doi.org/10.1371/journal.pone.0320785
https://doi.org/10.1371/journal.pone.0320785
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3007-2606
https://orcid.org/0000-0002-3459-7197
https://orcid.org/0000-0002-4357-8289
mailto:wijak.k@chula.ac.th

PLOS ONE

Effects of Topical Levofloxacin on Conjunctival Microbiome in Patients Undergoing Intravitreal Injections

Competing interests: The authors have
declared that no competing interests exist.

Conclusion

Although prophylactic topical levofloxacin was found to alter the conjunctival microbiome
and showed inconsistent effects on the abundance of pathogenic bacteria, its clinical
effectiveness as a preventative measure against endophthalmitis remains inconclusive.
Further studies are needed to clarify its role in infection prevention.

Introduction

Post-intravitreal injection (IVI) endophthalmitis is a rare but potentially sight-threatening
complication, with incidence rates ranging from 0.0018% after a single injection to 0.5%
following multiple injections [1]. Among preventive measures, the application of topical
povidone-iodine is widely regarded as the most critical step in reducing this risk [2]. The

use of prophylactic topical antibiotics before IVIs, however, remains controversial, with
evidence indicating limited efficacy in preventing endophthalmitis. A large Japanese study
involving 147,440 IVIs found no significant difference in endophthalmitis rates between
antibiotic-treated and untreated groups [3], corroborating data from the Retina Consultants
of Houston, which reported similar findings in 90,339 IVIs [4]. Current guidelines emphasize
povidone-iodine antisepsis as the primary evidence-based strategy for preventing endophthal-
mitis [2,5]. Despite these recommendations, the use of antibiotics persists in some regions,
such as Japan, where 97.2% of practitioners prescribe them, contrasting with US-based survey,
where only 21% report using pre-injection antibiotics [3,6]. Additionally, a UK-based sur-
vey emphasized the variability in antibiotic use and noted that guidelines discourage routine
prophylaxis due to insufficient evidence of effectiveness and concerns about resistance [7].
Previous culture-based studies have reported that the use of topical fluoroquinolones signifi-
cantly reduces conjunctival bacterial growth [8-10]. However, their direct impact on prevent-
ing endophthalmitis remains uncertain.

The ocular surface microbiome, composed of a diverse array of microorganisms, plays
a critical role in maintaining ocular health by protecting against pathogenic organisms and
modulating immune responses [11]. It is recognized as a potential source of infection in post-
IVI endophthalmitis [12].

Although recent studies using microbial sequencing to investigate the effects of topical
antibiotics on the conjunctival microbiome have been limited, understanding these changes is
crucial, as they can influence both the risk of infection and the health of the ocular surface. In
this study, we used 16S rRNA gene sequencing to explore how the conjunctival microbiome is
altered following the application of prophylactic topical antibiotics in individuals undergoing
IVL

Methods

The study was approved by the Institutional Review Board, Faculty of Medicine, Chulalong-
korn University (IRB No. 0597/65 and COA No.1522/2022), and all methods was conducted
in accordance with the Declaration of Helsinki. Informed consent was obtained from all
subjects for all examinations and procedures.

Subjects and study design

The study was conducted at King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
Treatment-naive patients over 18 years old with only unilateral retinal diseases requiring IVI
of anti-VEGF were included. The exclusion criteria were as follows: subjects with a known
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allergy to fluoroquinolone drugs; those with active ocular surface diseases (e.g., acute con-
junctivitis, corneal ulcer, severe dry eye, Stevens-Johnson Syndrome); those who has used any
ocular medication, systemic antibiotics, steroids, or immunosuppressive drug within the past
three months; those with a history of ocular trauma or surgery within the past three months;
and those with monocular vision or functional monocular vision.

A sample size of 33 eyes was calculated using a formula for comparing two dependent
means, with the standard deviation derived from a previous study [13, 14]. Subjects diagnosed
with retinal diseases were scheduled for intravitreal injections of anti-VEGFs at the Depart-
ment of Ophthalmology, King Chulalongkorn Memorial Hospital, between December 2022
and May 2023. Ocular surface samples were obtained from the treated eye in two sessions:
pre-antibiotic (Pre-ATB) and post-antibiotic (Post-ATB). Conjunctival swabbing, culturing,
DNA extraction, and 16S rRNA sequencing were performed by masked investigators (N.T.).

Sample collection and DNA storage

On the first day of recruitment, Pre-ATB conjunctival swabs were collected from the
treatment eyes. Three minutes after application of topical anesthesia (0.5% Tetracaine Hydro-
chloride Solution, Alcon®). A sterile cotton swab was then gently swept across the inferior
conjunctival surface from the nasal to the temporal side three times, rotating the swab 360

° with each pass to ensure thorough collection while avoiding any trauma to the conjuncti-

val tissue. The swab was then placed in a DNase-free tube containing a DNA/ RNA shield
solution (Zymo, Irvine, CA, USA) and transported to the laboratory. A sterile cotton swab was
placed in the transport medium without being used for the swab, serving as a negative control.
The samples were stored at -20 ° C and DNA was extracted in one week. Following this, sub-
jects were prescribed levofloxacin 0.5% eye drops (Santen, Japan) to be used four times daily
for three days before the intravitreal injections. On the day of injection, conjunctival swabs
were collected again from the same eye using the same protocol. Before injection, aseptic
technique was strictly applied throughout the procedure. A 10% povidone-iodine solution
was applied to the periocular skin, upper and lower eyelids, and eyelid margin, while a 5%
povidone-iodine solution was instilled onto the conjunctiva as eye drops. The intravitreal
injections were performed using a pre-filled 30-gauge needle.

Next generation sequencing analysis. Bacterial DNA was extracted by the QIAamp
DNA Microbiome Kit (QIAGEN, Germany). The extracted DNA was amplified using the
REPLI-g Mini kit (QIAGEN, Germany). The amplification of V3-V4 variable region of the
16S rRNA gene was determined using 341F and 805R primers and sparQ HiFi PCR Master
Mix (Quantabio, USA). Cluster generation and 250-bp paired-end read sequencing were
performed on an Illumina MiSeq (Illumina, USA) at the Omics Sciences and Bioinformatics
Center (Chulalongkorn University, Bangkok, Thailand).

Statistical analysis

Bioinformatics analyses. Microbiome bioinformatics were performed with DADA2
v1.16.0 pipeline (https://benjjneb.github.io/dada2/). The DADA?2 pipeline describes microbial
diversity and community structures using unique amplicon sequence variants (ASVs)

[15]. ASVs which have a total frequency of less than 55 reads and reads of mitochondria
and chloroplast will be filtered out. Microbial taxa were classified from Silva version 138
as a reference database [16]. Alpha diversity index (Observed ASVs, Chaol, Shannon,
and PD whole tree) was computed using DADA2 software. For Beta diversity, non-metric

multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity and principal
coordinate analysis (PCoA) were plotted from Phyloseq data. Linear discriminant analysis
effect size (LEfSe) [17] was performed to identify the bacterial biomarkers.
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Data analysis. Demographic data were analyzed using descriptive statistics. Pairwise
comparison of alpha diversity (Observed ASVs, Chaol, Shannon, and PD whole tree)
was calculated using ANOVA test. Permutational multivariate analysis of variance
(PERMANOVA) [18] was performed to evaluate the significant differences for beta diversity
among groups. Moreover, the Kruskal-Wallis sum-rank test was also used in LEfSe analysis
to identify bacterial biomarkers that differed significantly in abundant taxon between groups.
P<0.05 was considered statistically significant.

Results

A total of 33 eyes from 33 patients were included in this study. The mean age was 67.6 £ 11.6
years old (range 45-88 years old), and 43% were male. Retinal disease diagnoses included
diabetic macular edema (DME) in 15 patients (45.5%), polypoidal choroidal vasculopathy
(PCV) in 8 (24.2%), age-related macular degeneration (AMD) in 6 (18.2%), myopic choroidal
neovascularization (CNV) in 2 (6.1%) and retinal vein occlusion (RVO) in 2 (6.1%), respec-
tively. None of the patients developed post-IVI endophthalmitis.

Next-generation sequencing analysis

Mlumina sequencing of 16S rRNA genes produced a total of 4,320,354 reads. Following quality
data processing, 3,653,042 high-quality reads were retained. On average, each sample yielded
65,459 reads, with a range from 5,162 to 157,695. A total of 2,862 ASV's were identified.

The estimated saturation of microbial richness across all samples was approximately 3,241
sequencing depths, as indicated by rarefaction curves, which plateaued around 3,000 sequenc-
ing depths.

Taxonomic composition of conjunctival microbiome community

A total of 36 bacterial phyla, 40 classes, 376 families, and 720 genera were identified. The most
abundant phylum in both Pre-ATB and Post-ATB samples was Actinobacteriota, comprising
58.03% and 36.22% of the bacterial composition, respectively. This was followed by Firmic-
utes (21.67% in Pre-ATB and 28.08% in Post-ATB), Proteobacteria (10.16% and 24.30%), and
Chloroflexi (2.45% and 2.88%) (Fig 1). The abundance of Actinobacteria was significantly
lower in Post-ATB compared to Pre-ATB (36.22% vs. 58.04%, p = 0.009) (Fig 1). In contrast,
Proteobacteria was significantly more abundant in Post-ATB compared to Pre-ATB (24.30%
vs. 10.16%, p = 0.005), as was Verrucomicrobiota (0.9% vs. 0.42%, p = 0.02) (Fig 1). At the
family level, Corynebacteriaceae was significantly more abundant in Pre-ATB than in Post-
ATB (49.14% vs. 17.57%, p = 0.002) (Fig 2). Similarly, at the genus level, Corynebacterium
showed a significant decrease in abundance in Pre-ATB than in Post-ATB (49.34% vs. 17.66%,
p = 0.0002) (Fig 3). Although Staphylococcus and Bacillus were less abundant in Post-ATB
(1.73% and 2.97%, respectively) compared to Pre-ATB (7.12% and 1.78%, respectively), these
differences were not statistically significant (p = 0.252 and p = 0.843, respectively) (Fig 3).
Streptococcus showed an increased abundance in Post-ATB (13.5% vs. 6.95%, p = 0.072),
though this difference also had no statistical significance (Fig 3).

Linear Discriminant Analysis Effect Size (LEfSe) was applied to identify potential biomarkers
distinguishing Pre-ATB and Post-ATB groups by evaluating significant variations in bacterial
distribution. The bar chart displays the effect size, represented by LDA (Linear Discriminant
Analysis), for taxa identified as significant in each group. Taxa with LDA scores greater than 2
were considered significant. The results are presented in Fig 4, Fig 5, Fig 6, and Fig 7.

Alpha-diversity. Alpha-diversity was assessed using observed ASVs, Chaol, Shannon,
and phylogenetic diversity (PD) whole tree. No significant differences were found between the
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Fig 1. Top 25 bacterial taxa at the phylum level of the ocular surface microbiome in Pre-ATB (A) and Post-ATB (B) groups
(top). Comparison of the top 10 phyla between the Pre-ATB (A) and Post-ATB (B) groups (bottom). (*p value < 0.05; **p value
< 0.001; **¥p value < 0.0001).

https://doi.org/10.1371/journal.pone.0320785.9001
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Fig 2. Top 25 bacterial taxa at the family level of the ocular surface microbiome in Pre-ATB (A) and Post-ATB (B) groups
(top). Comparison of the top 10 family between the Pre-ATB (A) and Post-ATB (B) groups (bottom). (*p value < 0.05; **p
value < 0.001; **¥p value < 0.0001).

https://doi.org/10.1371/journal.pone.0320785.g002
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Fig 3. Top 25 bacterial taxa at the genus level of the ocular surface microbiome in Pre-ATB (A) and Post-ATB
(B) groups (top). Comparison of the top 10 genus between the Pre-ATB (A) and Post-ATB (B) groups (bottom). (*p
value < 0.05; **p value < 0.001; **¥p value < 0.0001).

https://doi.org/10.1371/journal.pone.0320785.g003

Pre-ATB and Post-ATB groups (p-value > 0.05). The box plots illustrating the alpha-diversity
are shown in Fig 8.

Beta-diversity. Principal coordinate analysis (PCoA) using weighted UniFrac and
GUniFrac distances revealed a significant difference in the human ocular surface microbial
communities between Pre-ATB and Post-ATB (PERMANOVA test; p < 0.05) (Fig 9). Pairwise
analysis of the distance metrics further confirmed a significant difference between the two
groups in the weighted UniFrac PCoA (p < 0.001) (Fig9).
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Fig 4. Linear discriminant analysis effect size (LEfSe) biomarker analysis showing biomarker phylum with
significance differential abundance in Pre-ATB (A) and Post-ATB (B). Bacterial taxa with LDA scores greater than
+2 were considered significant. LEfSe analysis.

https://doi.org/10.1371/journal.pone.0320785.9004
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abundance in Pre-ATB (A) and Post-ATB (B). Bacterial taxa with LDA scores greater than +2 were considered significant. LEfSe
analysis.

https://doi.org/10.1371/journal.pone.0320785.9005

Discussion

Endophthalmitis, a serious complication following IVI, is primarily caused by microorgan-
isms introduced during the procedure. The most common pathogens include Staphylococcus
epidermidis, Staphylococcus aureus, and Streptococcus species, along with gram-negative
bacteria such as Escherichia coli and Pseudomonas aeruginosa [19, 20]. This study aimed to
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ered significant. LEfSe analysis.

https://doi.org/10.1371/journal.pone.0320785.g006

investigate the impact of topical levofloxacin administration on the conjunctival microbi-
ome in eyes that received intravitreal injections. Levofloxacin eye drops were chosen for this
study due to rapid onset of action and broad-spectrum antibacterial activity against both
gram-positive and gram-negative organisms. The three-day regimen allows for sustained
antibacterial activity without promoting significant bacterial resistance, which can occur with
prolonged antibiotic use [10,21].

Before the use of topical, three predominant phyla identified in our samples were Acine-
tobacter (58.03%), Firmicutes (21.67%), and Proteobacteria (10.16%). These three were
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https://doi.org/10.1371/journal.pone.0320785.g007

commonly reported in the earlier studies on the ocular microbiome using conjunctival swabs
in healthy individual [22, 23]. However, our study shows a greater relative abundance of
Acinetobacter. At the genus level, the most commonly identified ocular bacteria (defined as
>1% of all detected genera) were Corynebacterium (49.34%), Staphylococcus (7.12%), and
Streptococcus (6.96%), which are considered potential core genera. However, certain genera,
including Acinetobacter, Pseudomonas, and Propionibacterium, were less abundant compared
to previous studies [24]. These differences could be related to variations in the composition
of the conjunctival microbiome among the enrolled subjects and the method used for sample

collection.
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After the use of topical antibiotics, our study found no significant changes in alpha

diversity metrics, including the Shannon index and species richness (p > 0.05). This stability
suggests that levofloxacin does not cause a broad reduction in microbial diversity but instead
exerts targeted effects. However, beta diversity analysis revealed significant shifts in micro-

bial community composition (PERMANOVA, p < 0.05). Specifically, the relative abundance

of Staphylococcus and Bacillus species decreased, while Streptococcus and gram-negative

bacteria, such as Haemophilus, increased. These compositional changes align with known
antibiotic susceptibility patterns. For example, a Korean study examining conjunctival flora
in patients undergoing anterior segment surgery reported susceptibility rates of 78.7% for
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coagulase-negative staphylococci (CNS) and 94.6% for gram-negative isolates to topical
levofloxacin [25]. The increased abundance of Haemophilus, despite its high susceptibility to
levofloxacin, may reflect ecological shifts driven by the suppression of gram-positive bacteria.
Such alterations in the microbiome could compromise the conjunctival barrier, potentially
increasing susceptibility to pathogen proliferation during invasive procedures like intravitreal
injections. These findings underscore the importance of judicious antibiotic selection to main-
tain microbial homeostasis and minimize the risk of complications.

In addition, we found the shifts in particular microbial populations after topical antibiotics.
A distinct core composition was found Marinobacteraceae, Gemellaceae, Exiguobacteraceae,
Lachnospiraceae, and Rubritaleaceae emerging as the dominant bacterial families (p < 0.05).
Notably, none of these altered core microbiota have been associated with post-IVI endophthal-
mitis [19]. This altered composition significantly differs from the healthy ocular surface micro-
biome reported in previous studies [11,26,27]. Based on the results, we propose that levofloxacin
may alter the microbial composition; however, its effectiveness in fully eradicating potentially
pathogenic bacteria is variable, as certain bacteria may persist or appear more dominant after
treatment due to shifts in community structure rather than actual proliferation.

There have been a few studies evaluating the effect of use of perioperative topical antibiot-
ics on conjunctiva microbiomes. Ya-Guang Hu et al. reported that the use of levofloxacin eye
drops in patients who had undergone multiple intravitreal injections resulted in a decrease
in the diversity of the ocular surface microbiome [28]. They also observed changes in the
composition, including a relative increase in the abundance of gram-negative bacteria, such
as Proteus. Zhu et el. conducted a study comparing the conjunctival microbiome of patients
with type 2 diabetes mellitus (T2DM) and non-diabetic controls undergoing cataract surgery
[29]. After three days of preoperative topical levofloxacin, Staphylococcus was found to be
significantly more abundant genus in the conjunctival microbiome of patients with T2DM
compared to controls. However, no significant changes in the conjunctival microbiome
were observed in the control group. The discrepancy between their findings and ours may
be explained by several key factors. First, differences in study populations: While our study
included a diverse group of patients undergoing IVI with various diagnoses, the Zhu et al.
study specifically compared T2DM and non-diabetic patients undergoing cataract surgery
[29]. This focus on T2DM patients likely reflects differences in baseline microbiome compo-
sition, as T2DM is known to predispose individuals to higher baseline levels of Staphylococcus
and other opportunistic pathogens due to systemic dysbiosis. Second, variation in sample
collection and antibiotic exposure: Although both studies utilized 16S rRNA sequencing to
profile the conjunctival microbiome, our study collected samples after a three-day course
of preoperative levofloxacin. In contrast, the Zhu et al. study involved a longer antibiotic
regimen that included both pre- and postoperative levofloxacin treatment. This extended
exposure may have selectively enriched Staphylococcus in the diabetic microbiome, which is
inherently more vulnerable to dysbiosis and microbial shifts [29].

Previous clinical studies found a lack of effect regarding the use of topical antibiotic prophy-
laxis on the rate of endophthalmitis after IVI [30,31]. This may be due to several factors. First,
endophthalmitis is a rare complication, and the low baseline incidence makes it challenging to
detect statistically significant differences between those receiving prophylactic antibiotics and
those who do not. Additionally, the widespread adoption of effective surgical techniques, strin-
gent sterile protocols, and the use of antiseptics such as povidone-iodine may already reduce
infection risk to such an extent that the added benefit of topical antibiotics becomes negligible.
This finding was supported by a culture-based study. Following the use of three days of gati-
floxacin eye drops prior to intravitreal injection, the rate of positive bacterial cultures decreased.
However, this decrease was not observed with the use of povidone iodine [10].

PLOS ONE | https://doi.org/10.1371/journal.pone.0320785 March 31, 2025 13/16




PLOS ONE

Effects of Topical Levofloxacin on Conjunctival Microbiome in Patients Undergoing Intravitreal Injections

The overuse of perioperative topical antibiotics raises concerns about bacterial resistance,
which can diminish their effectiveness and potentially increase the risk of endophthalmitis.
In a retrospective case-control study, the incidence of endophthalmitis following intravitreal
injections increased despite the use of topical antibiotic prophylaxis, which was also associ-
ated with a higher incidence of antibiotic resistance among culture-positive cases [30]. Yin et
al. also found that the repeated use of topical moxifloxacin following intravitreal injections
significantly increases antibiotic resistance on the ocular surface [32].

Our study is limited due to the small sample size. Thus, we could not perform our anal-
ysis based on patients’ preexisting conditions such as diabetes and aging, as these may have
different baseline conjunctival microbiomes and may yield varying results with the topical
antibiotics. Further prospective studies with varying durations and coverage spectra of topical
antibiotics may provide deeper insights. Additionally, microbiome analysis alone cannot
directly identify antibiotic-resistant strains. The use of culture-based methods would allow
for the identification of live bacteria and enable antibiotic susceptibility testing, addressing
the question of whether the use of topical antibiotics could potentially lead to the selection of
resistant microbial strains.

Another limitation of this study is the lack of quantitative measures, such as
quantitative-PCR (qPCR), to assess absolute bacterial loads. This limitation may have led to
an under or overestimation of bacterial abundance in post-antibiotic samples when analyzing
relative abundances. Future studies incorporating quantitative methods would help provide a
more accurate assessment of bacterial load changes.

In conclusion, our study demonstrated that the use of levofloxacin eye drops for prophy-
laxis against post-intravitreal injection endophthalmitis alters the composition of the conjunc-
tival microbiome. However, the effectiveness of this antibiotic regime in reducing the risk of
endophthalmitis remains uncertain. Further research is needed to develop tailored antibiotic
strategies that optimize preoperative prophylaxis while minimizing the risk of postoperative
infections.
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